Bulk aqueous phase kinetic and chamber studies leading to new CAPRAM modules and applications

Hartmut Herrmann¹, Peter Mettke¹, Martin Brüggemann¹, Lin He¹, Andreas Tilgner¹, Erik H. Hoffmann¹, Can Ye², Yujing Mu², Hui Chen³, Jianmin Chen³, and Thomas Schaefer¹

¹Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstr. 15, D-04318 Leipzig, Germany ²Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

³Shanghai Key Laboratory of Atmospheric Particle PoAllution and Prevention, Department of Environmental Science & Engineering. Institute of Atmospheric Sciences, Fudan University, Shanghai, 200433, China

In this presentation, recent experimental work on aqueous chemistry centered around organics in atmospheric particles is described which was performed to lead to new modules and improvements for the atmospheric aqueous mechanism CAPRAM. Isoprene: Gas phase oxidation of isoprene under low NO_x conditions leads to the formation of oxygenated organic hydroperoxides, ISOPOOHs and ISOPOOH2 that can chemically interact with aerosol particles and clouds. Recent investigations at TROPOS are aimed at the multiphase chemistry of these compounds, particularly, on their potential to act as source of aqueous OH and aqSOA. For this goal, the two most abundant isomers of isoprene-derived hydroxy hydroperoxides (ISOPOOH) were synthesized to investigate both aqueous-phase kinetic as well as multiphase partitioning using chamber studies. A suitable OH scavenger, analysed by gas chromatography mass spectrometry (GC-MS), was used to determine the OH radical production rate of the thermic decay, the photolysis and a Fenton type reaction of ISOPOOH with iron(II) salts in aqueous solution were determined and compared. A series of aerosol chamber experiments was performed to investigate the gas-particle partitioning of the synthetic standards as well as their oxidation products for various inorganic seed particles under different conditions. Connected CAPRAM work shows that multiphase ISOPOOH/ISOPOOH2 chemistry can act as an important source for aqueous OH and aqSOA in both aerosols and clouds.

Biomass burning (BB) is a significant air pollution source, with global, regional and local impacts on air quality, public health and climate. Anhydrosugars and methoxyphenols are the most important BB products emitted into the atmosphere. A CAPRAM BB-module treating the oxidation of such compounds has been developed based on the kinetics data from the laser flash photolysis measurements in our lab. The developed CAPRAM-BB module, as the first of its kind, is applied for different BB simulation cases investigating both the tropospheric processing of BB compounds and their contribution to other aqSOA compounds.

 H_2O_2 : During winter, the North China Plain (NCP) is frequently characterized by severe haze conditions. Recent NCP studies during autumn/winter 2017 haze periods have revealed unexpected high H_2O_2 concentrations of about 1 ppb suggesting H_2O_2 as a potential contributor to secondary PM2.5 mass, e.g., due to sulfur(IV) oxidation¹. However, the multiphase H_2O_2 formation under such NOx concentrations is still unclear. Therefore, the present study aimed at the examination of potential multiphase H_2O_2 formation pathways, and the feedback on sulfur

oxidation by combined field, chamber and model studies. A series of chamber experiments with particles containing Suwanee River Fulvic Acid (SRFA) as a proxy for humic-like substances (HULIS) under high NO_x and high SO₂ conditions were performed. Monitored gas-phase H₂O₂ concentrations increased during UV-radiation compared to blank experiments without SRFA, indicating a photochemical mechanism involving HULIS. The role of transition metal ions was shown by significantly lower gas phase H₂O₂ concentrations with a suitable chelating agent present in the seed solution. Performed simulations with an new advanced HONO and HOx CAPRAM mechanism scheme are able predict high in-situ H₂O₂ formations in haze particles and show a good agreement with field data. Rate analyses reveal that a huge fraction of the multiphase HO2 radicals, formed via an efficient TMI-HULIS chemistry, and nearly all of the subsequently formed reaction product H₂O₂ is produced in-situ within the haze particles and does not origin from the gas phase. Finally, the model studies show that, during the morning hours, the agueous-phase reaction of H₂O₂ with S(IV) contributes considerably to S(VI) formation beside the HONO related formation of sulfuric acid by OH in the gas-phase.

References

Ye, C. *et al.* High H₂O₂ concentrations observed during haze periods during the winter in Beijing: Importance of H₂O₂ oxidation in sulfate formation. *Environ. Sci. Technol. Lett.* **5**, 757-763, doi:10.1021/acs.estlett.8b00579 (2018).