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Introduction

• With the monitoring of Fe(II) conversion, the rate constant of the Fenton-like reaction

(FeC2O4 + H2O2) was determined as (2.8± 0.6)×103 L mol-1 s-1.

• EPR results showed a decrease in the HO• budget. The kinetic model indicated that

the product of Fenton-like reactions is not the HO•.

• Faster Fe(II) conversions and lower HO• production in the presence of oxalate were

seen at lower initial molar fractions of FeC2O4.

• Thermochemical parameters were estimated and ΔS‡ increased in the presence of

oxalate if compared to the Fenton reaction (-6.0± 0.8 vs. -87± 9 J K-1 mol-1).

• The formation of other reactive species, such as higher-valent Fe species, could help

to clarify the reduction of the final HO• yield.
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Experimental

EPR Spin-Trapping

Iron conversion

Spin-trapping investigation of HO• production: 
dependence on oxalate concentration 

• Performed in a Bruker EMXplus

spectrometer (Fe:H2O2 1:10, DMPO

0.2 M). Quantification of radicals:

Xenon – SpinFit.

• APHA 3500 Fe test (APHA, 1997).[6]

• Fe(II) and ortho-phenanthroline

complex.

• DMSO used as a scavenger of HO•

kHO• = 6.6× 109 L mol-1 s-1.

Results

Fig. 5: Arrhenius plots of experimental (black 

traces and data points) obtained at pH 3 

compared to literature values [7-10]

Fig. 7: Simulation of Fe conversion results at different 

pH and initial molar fraction of FeC2O4 (ΧFe-L).

Atmospheric aqueous phase implications

• Fenton processes are key reactions in atmospheric oxidation cycles, and Fe is

found complexed with organic ligands, particularly oxalate. The investigated pH

range is relevant for aerosol (pH 1-5) and cloud conditions (pH 2-7) [11].

• The observed shift in the mechanism at lower concentrations of FeC2O4 could play

a critical role in the HO• budget.

• If present, higher-valent Fe species would modify the reactions occurring in the

atmospheric aqueous phase since they have different reactivity and lower rate

constants with organic compounds if compared to HO•.

Fig. 2: Speciation of Fe(II) in the presence of

oxalate. Investigated pH range indicated by the

shaded rectangle. Conc. Fe(II) 4.5 × 10-6 mol L-1

and oxalate 9 × 10-6 mol L-1. (Visual MINTEQ 3.1)

Fig. 1. Concentrations of Fe and dicarboxylic 

acids measured in aerosol samples with 

different origins[2-5]

Fenton Fenton-like

Ea (kJ/ mol) 38 ± 5 54 ± 10

A (1/M s) (4.4 ± 0.6) 108 (8.4 ± 1.2) 1012

ΔH‡ (kJ/mol) 36 ± 5 52 ± 10

ΔS‡ (J/K mol) -87 ± 9 -6.0 ± 0.8

Table 2. Thermochemical parameters of Fenton and 

Fenton-like reactions at pH 3 

Temperature dependence and thermochemical parameters

Temperature 

(K)

kF

(L mol-1 s-1)

kFL

(L mol-1 s-1)

278 29.4 ± 0.5 583 ± 225

288 51.0 ± 1.0 1125 ± 290

298 78.7 ± 4.3 2823 ± 1160

308 160.0 ± 7.5

318 236.5 ± 15.0

Table 1. Temperature dependence of Fenton (kF) and 

Fenton-like (kFL) second-order rate constants at pH 3 

𝑘𝑎𝑝𝑝 = 𝒌𝑭𝒆𝒏𝒕𝒐𝒏 𝒙 𝝌𝑭𝒆𝟐+ + 𝒌𝑭𝒆𝒏𝒕𝒐𝒏−𝒍𝒊𝒌𝒆 𝒙 𝝌𝑭𝒆𝑪𝟐𝑶𝟒

• Fenton and Fenton-like reactions take

place simultaneously due to the lower

initial molar fraction of FeC2O4.

• The APHA 3500 test cannot distinguish

between FeC2O4 and Fe2+. The observed

kinetics is Fe(II) conversion (Fig.3).

Kinetic modeling

• MATLAB R2018.

• Fe conversion and EPR data.

• Fenton reactions play important roles in the

production of HO• in the atmospheric

aqueous particle phase.

• Reported second-order rate constants

for Fenton (Fe2+ + H2O2) range from 40 to

80 L mol-1 s-1. This rate can be modified with

the Fe speciation (Fenton-like) [1].

• Volatile organic compounds undergo

oxidation into dicarboxylic acids that can

complex Fe [2]. Iron complexes have

different solubility and reactivity.

• In the present study, the Fenton reaction

has been investigated in the presence of

oxalate.

Experimental determination of the second-order rate constant of 
the Fenton-like reaction 

Fig. 4: Variation of kapp as a function of 

the molar fraction of FeC2O4

𝑭𝒆𝟐+ +𝑯𝟐𝑶𝟐 → 𝑭𝒆𝟑+ +𝑯𝑶• +𝑯𝑶−

𝑭𝒆𝑪𝟐𝑶𝟒 +𝑯𝟐𝑶𝟐 → 𝑭𝒆𝑪𝟐𝑶𝟒
+ +𝑯𝑶• +𝑯𝑶−

Slope corresponds to the second-order rate 

constant for the Fenton-like reaction 

Fig. 3: Observed kinetics of Fe(II) conversion. 

Kinetic profile simulated using MATLAB.

• EPR results showed a decrease in the HO• production at increasing ligand

concentrations. The kinetic model indicated that the product of the Fenton-like

reaction is not HO•.

Fig. 6: EPR spin-trapping concentration profile in increasing ligand concentrations at (A) pH3 and 

(B) pH 5. Kinetic profiles were simulated in MATLAB.

• Kinetic simulations of the

reaction yields indicate a shift to

Fenton-like reactions even at low

initial molar fractions of the

FeC2O4 (Fig. 7).

• The shift happens due to the fast

complexation of Fe2+ by oxalate

(k= 1.0 × 106 L mol-1 s-1) and its

faster rate constant towards

H2O2 decomposition.
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