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Investigation of rate constant of Fenton- I|ke reactlons IN the presence of
Glutamic and Glutaric acid at pH 5 determined by UV/VIS spectroscopy
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Introduction

 Fenton reactions are crucial In producing
‘'OH In the atmospheric aqueous particle
phase.

 Reported second-order rate constants
for Fenton (Fe’* + H,0,) at 68 L mol! s
This rate can be modified with the Fe
speciation (Fenton-like).!

« Glutamic acid, as a multifunctional amino
acid which Is abundant in nature, undergoes
different protonation states depending on
the pH of the solution!?!

* Iron can form a complex with amino acids,
such as glutamic acid, which may
significantly modify the reaction kinetics.
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Fig.1l: Proportional distribution of amino acids
In the coarse-mode particles as combined
amino acids. 1

Fe?*(C.H,NO,) + H,0, > [Fe(C-H,NO,) |** + HO" + HO™
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Fig. 2: Formation of complex between Fe(ll)
and 1,10-Phenanthroline

« DMSO used as a scavenger of HO®

Rate constants determination
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 First and second-order rate constant.
* Employing UV-Vis spectroscopy.
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Redox Potential
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 Explore the redox behavior of the
Fe* /| Fe3 in the presence of
glutamic acid

« DMSO used as a scavenger of HO®
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Fig. 3: Absorption spectra of the complex at
45 X10° mol L* Fe and 4 X10% mol L'
H,O, throughout the Fenton reaction

L 4
ke
05‘

o‘

o

L
-..:3,'
,‘S
5
’-3'
A
’. }
[ ] *ﬁ‘
hvig G
e

.
.
VY
\d J
‘-s”

W
4
2
%
’e
| 4
o%u

’."t’“

| 4 '. u

i“-‘:’r
XX

-v-“ v
4

2

" 4
T g
3
LN A
* 5.‘
Ui g &

N
deu
[ ]

L 4
L/

L
% :;:-;‘-

L 4

: 3N,
}l

:
o,

"

L 4 oY @ =,
Ly |
4

Kinetics of Fenton-like reaction

0.00005 - ®

Low pH favors the formation of certain
Fe—glutamate complexes.

« As pH Increases, the speciation of
these complexes shifts, influenced by
changes In ligand protonation and
metal-ligand binding affinities
(availability of free Fe?* ions decrease)
leading to the formation of insoluble
Fe(OH), or the oxidation to Fe3* ions,
which form Fe(OH), precipitates!’]
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Fig. 4. Speciation of Fe(ll) in the presence of
Glutamic acid at different pH. Conc. Fe(ll) 4 x
103 mol L-! and Glutamic acid 4 x 104 mol L.
(Visual MINTEQ 3.1)

First-order and second-order rate constant
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Improving Complex Formation with UV-vis Spectrum Analysis
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The UV-vis spectrum shows iron
(Fe?*) forms a stable complex with
glutaric acid. This shift to lower
wavelength indicates coordination
between Fe?* and glutaric acid,
similar to glutamic acid complexes.

 While the stablility constant for the
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Fig. 7: UV-Vis Spectrum for Forming complexes with glutaric acid Complex IS

two different concentrations of glutaric acid at pH 5
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unspecified. Based on the similarity
between the two complexes, a
comparative spectral investigation
was conducted to explore their
complexation behavior.

et w + 2H,0

Fig. 8: Formation of the complex using structural
formulas
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Fig.5 : Plot of In of Fe (lI) concentration as a
function of time at different concentrations of
hydrogen peroxide for glutamic acid

Fig.6 : Plot of the first-order rate constants
against the different hydrogen peroxide for
glutamic acid ,glutaric acid and without
ligand.

« The first-order rate constant was
calculated by analyzing the reaction
progress at different H,O, concentrations.
The reaction rate was proportional to the
concentration of H O, which ranged from
1.5% 10" to 6 X 10 mol L™.

« The presence of the ligand significantly

Slope corresponds to the second-order rate
constant for the Fenton-like reaction

Table 1. Second-order rate constants obtained
with different ligands at pH 5

Reactions at pH 5 k,/L molis-t

Increased the slope of the plots, leading to

accelerated the reaction rates. without ligand 68 £ 2
. * The slope with glutamic acid was higher 102+ 5

than without any ligand, indicating a 82 + 2

noticeable effect of complexation of _ S

glutamic acid with iron on the kinetics of with glutamic acid 130

the reaction. (observed)

The Fenton-like reaction at pH 5 was Initially measured with a second-order rate -

-2 constant of 68 = 2 L mol's™ in the absence of any ligand, serving as the reference. -

By introducing glutamic acid, the rate constant increased to 102 = 5 L molis7,
Indicating a significant enhancement in reaction kinetics due to ligand coordination.

il FeiFo. behavior of Fe ions by altering their

| T oxidation potentials.
o 1 o ] ————sFe(Glutamate - Stable complexes are formed with
O I o i [omien Fe>r and Fe¥, affecting their
2 eap | reowmlreow | electrochemical properties, and the
o= T reeneveer] reteteyse redox potential of the Fe?/Fe3
& oot roonaf Fomcian gained from Nernst equation:
é el | Fe(OH),* - Fe(OH),°
o E=F— orinQ ©

3 e The redox potential of 0.514 V

demonstrates the important role of
ligands like glutamic acid in modifying
Iron’s electrochemical properties.

Fig. 9: Redox reactivity of organically complexed
iron(ll) species ¢

Atmospheric agueous phase implications

* In the atmospheric aqueous phase, organic acids such as glutamic acid can
complex with metal 1ons like Fe?, modifying their reactivity and influencing
atmospheric chemistry. This metal-ligand complexation is critical as it regulates
the formation of reactive oxygen species (ROS), particularly hydroxyl radicals
(HO*), which are key to the oxidation of pollutants and aerosolsl’]

 These complexes are particularly important in aerosols and cloud droplets, where

they faclilitate redox reactions that drive atmospheric oxidation cycles under acidic
conditions (pH 1-5). 8]
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