EPR studies of Reactive Oxygen Species (ROS) and the pH Effect on the Iron Catalytic Cycles Leibniz Institute for Tropospheric Research, Atmospheric Chemistry Department (ACD), Leipzig, Germany

Leibniz Institute for Tropospheric Research, Atmospheric Chemistry Department (ACD), Leipzig, Germany

Contact: poschar **EPR studies of Reactive Oxygen Species (ROS) and the pH Effect on the Change of Reactive Cycles

Elena Poschart, Thomas Schaefer, Daniele Scheres Firak, and Hartmut Herrmann

Machina and the pH Effect on the Change of Ch** Dxygen Species (ROS) and the pH Effect on the

Exchange Scheres Firak, and Hartmut Herrmann

Introduction

, Q_z , or RO₂ redicals as well as peroxides occur in the tropospheric

, Q_z , or RO₂ redicals as well as per **ygen Species (ROS) and the pH Effect on the Exercise Secondary (ROS)**

And the pH Effect on the schemation of the strategy o **Species (ROS) and the pH Effect on the**

Firak, and Hartmut Herrmann

g, Gemmany
 Introduction

radicals as well as peroxides occur in the tropospheric son formation Deliquescent particles

(e.g., cloud, forg, and deli **PR studies of Reactive Oxygen Species (ROS) and the pH Effect on the methods in the gas phase system the methods of the aqueous phase and in the aqueous phase (e.g., clouds, fog, and deliquescent aerosols). [1,2,3,4] and EPR studies of Reactive Oxygen Species (ROS) and the pH Effect on the reduction Catalytic Cycles

Elena Poschart, Thomas Schaefer, Daniele Scheres Firak, and Hartmut Herrmann

Works for short-lived Rosenard Chemical Chem EPR studies of Reactive Oxygen Species (ROS) and the pH Effect on the control and the model and the pH Effect on the control and the active of Rosental Scheder, Daniele Scheres Firak, and Hartmut Herrmann solve the repre PR studies of Reactive Oxygen Species (ROS) and the pH Effect on the main Schaff Control in the person of the pH Effect on the main Poschart, Thomas Schaefer, Daniele Scheres Firak, and Hartmut Herrmann are reactive open**) to form OH radicals. [6,7,8] **EPR studies of Reactive Oxygen Species (ROS) and the pH Effect on the momentum access of Northern action (Figure 1).** The different acidity content action of the anisotic strengthenes in the agreement (No. 0): or RO, not **PR studies of Reactive Oxygen Species (ROS) and the p

In Catalytic Cycles**
 **PRIMEM TON CALITS CONTIFY CO

IN THE POSSIGNET THOMAS Scheme Ch EPR studies of Reactive Oxygen Species (ROS) and the pH Effect on the mechanism of the Fenton reaction and the fate of PR studies of Reactive Oxygen Species (ROS) and the pH Effect on the system of Contents and the effects of phenomenon and the system internal contents are effects on the system of the system of the system of the system o EPR studies of Reactive Oxygen Species (ROS)**
 Form Catalytic Cycles

<u>Elena Poschart,</u> Thomas Schaefer, Daniele Scheres Firak, and Hartmut Herrma

behit healthy for Topsgeher, Rosearch, Amospheric Chemistry Department **FINDIC SURFER CONTRACTIVE CAYGUATION SURFER (NOS)**
 FOR CATENT Thomas Schaefer, Daniele Scheres Firak, and Hartmut Herrma

besteh tradition for the computer scheme (ACC) Legacy Germany

contact posses the form of the c

Elena Poschart, Thomas Schaefer, Daniele Scheres Firak, and Hartmut Herrmann

Contact: poschart@tropos.de

Introduction

- Reactive oxygen species (ROS) such as OH, HO₂, O₂⁻, or RO₂ radicals as well as peroxides occur in the tropospheric
-
-
-

EPR experiment

Scavenging of OH and quantification by EPR method Scavenging of OH and quantification by GC-MS method

- DMPO spin-trap, which forms a stable radical adduct (Fig. 2). [10]
- EPR-detectable signal.
- Fe(II) is mixed with up to 9×10^{-5} M H_2O_2 in a 1 mL flask in the DMPO DMPO presence of 2×10-2 M DMPO.

Fig. 2: Adduct formation from the Fenton reaction.

 E_1 is in the with $E_2 \sim 10$
Fig. 3: OH scavenging and derivatization reaction. The batch reactor.

- to form of 1×10^{-2} M propanol-d₈ to form acetone-d₆. $m_{\frac{1}{2}}$
 $m_{\frac{1}{2}}$
 $\frac{1}{2}$
 $\frac{1}{2}$
- (o-(pentafluorobenzyl)-hydroxylamine) **TROPOS**

Lealist Contained for

Lealistance Contained for the search

Tropospheric Research
 \therefore \therefore **Example 1991**

Lehing Hatting Considers the state of the state o
-

pH-dependent measurements using the EPR

- H2O2 and Fe(II), lowering the pH pH=3 pH=2 $\frac{1}{25\times10^{-6}}$ $\frac{1}{25\times10^{-6}}$ EPR signal. 2,0×10-6 3,0×10-6 pH=4.5 pH=4
- DMPO-OH adduct concentration 1,0×10-6 $\frac{1}{36}$ due to a lower pH limits its use for $\frac{1}{2}$ and $\frac{1}{36}$ and $\frac{1}{36}$ the rate constant determination. The change in the detected
	- EPR, a GC-MS method was applied for comparison.

pH-dependent measurements using the GC-MS Fig. 6: Measured concentration-time-profiles of

Fig. 5: Measured concentration-time-profiles of 5 7.0 ± 0.07 \times 10
acetone-d₆ at different pH values using GC-MS technique

المقاطر $\mathbb{R}^{8,0\times10^{-6}}$ \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} Fenton reaction shows also a **First measurements** pH=5
pH=3 **bH** value in the concentral

- between 2 and 4.
-

Summary & Outlook

- The decomposition of peroxides such a H_2O_2 and 1,2-ISOPOOH through the Fenton reaction in the aqueous phase was investigated.
- and by GC-MS for pH values between 2 and 5.
-
- from the EPR data.

the different H_2O_2 concentrations.

• Applying the k_{1st} values against 4.5×10^{-5} $8.9 \pm 0.1 \times 10^{-3}$ 2.5×10^{-5} 1.2 ± 0.1 × 10⁻² 1.5×10^{-5} $9.8 \pm 0.1 \times 10^{-3}$ 0.93 F

Fig. it Ros formation by Ferincial

Unit VoC Emissions

Fig. it Ros formation by Ferince neaction in the

emosphere, adopted from Tong et al., 2017 [5].
 Eactor experiment

by GC-MS method

the 'OH formed reacts in t Fundally Chemical Public Theorem is a give

Fig. 1: ROS formation by Fenton reaction in the

atmosphere, adopted from got al., 2017 [5].
 Eactor experiment

by GC-MS method

the CH formed reacts in the presence

f $1 \times$ **Example 12.1 For the Controllering the Controllering of the dimension of** $\frac{p}{2}$ **or** $\frac{p}{2}$ **is also to the dimensioner, adopted from Tong et al., 2017 [5].

EXECUT EXPOREMENTE EXECUTE ASSEMBLY** is a proposible of 1 Usir VOLE missions

VEG. 1: ROS formation by Fenton reaction in the

atmosphere, adopted from Tong et al., 2017 [5].
 EACOCY EXPETIMENT

LOCOMENTER TIME TO THE PRESENCE THE THEORY OF CHEATED CONDUCTED (CONDUCTED 1000000 **reactor experiment**
 n by GC-MS method

The 'OH formed reacts in the presence

of 1×10^{-2} M propanol-d₈ to form

acetone-d₆.

Acetone-d₆ was derivatized by 2×10^{-2} M

(o-(pentafluorobenzyl)-hydroxylamine)

 $\frac{1}{\frac{1}{\frac{1}{\sqrt{1-\frac{$ Time [s] Second-order rate constant:

]/ M k1st / s-1 R2

 k_{2nd} = 67 \pm 297 L mol⁻¹ s⁻¹

First measurements on organic hydroperoxides by EPR at TROPOS

obtained by using an organic in the line of the books obtained by using an organic

 n at pH = 4.5.

Acetone-d₆ was derivatized by 2×10^{2} M
(o-(pentafluorobenzyl)-hydroxylamine)
and analyzed by GC-MS. [11]
The Fenton reagent of 5 x 10⁶ M Fe(II)
is mixed with 2.5 x 10⁶ M H₂O₂ in a 150
mL batch reactor.

n hydroperoxide (ISOPOOH) instead of H_2O_2 (Fig. 7). $\frac{1}{200}$
 $\frac{1}{200}$
 Fig. 2: Two isometric isoprene in the DMPO-
Fe(II) and DMPO concentrations with
Fig. 9.1 M k_{rad}/s^{-1} R²

9.5 x 10⁻⁶ 9.8 ± 0.1 × 10⁻³ 0.98

1.5 x 10⁻⁵ 9.8 ± 0.1 × 10⁻³ 0.94

4.5 x 10⁻⁵ 9.8 ± 0.1 × 10⁻³ OOH OOH

References

[1] H. Hermann, T. Schaefer, A. Tilgner, S.A. Styler, C. Weller, M. Teich and T. Otto, *Chem. Rev.*, 115, 10, 4259-4334 (2015). [2] U.
Pöschl and M. Shiraiwa, *Chem. Rev.*, 115, 10, 4440-4475 (2015). [3] B. Bonn, R. von Ku **31**, 10, L10108 (2004). [4] S. Enami, *J. Phys. Chem. A*, **125**, 21, 4513-4523 (2021). [5] H. Tong, P. S. Lakey, A. M. Arangio, J. Socorro, C. J. Kampf, T. Berkemeier, W. H. Brune, U. Pöschl and M. Shiraiwa, *Faraday Dis*

- **Results**
	-
	- Kinetic study of the classical Fenton reaction by EPR

 CD_3

Aqueous phase bulk reactor experiment

