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Introduction

During winter, the North China Plain (NCP) is - Multiphase chemistry simulations of the measurement campaign with the box model SPACCIM [2]

frequently characterised by severe haze conditions - Usage of the multiphase chemistry mechansim MCM/CAPRAM together with advanced modules [3-6]
connected with extremely high PM,, and NO,

concentrations, i.e. strong air pollution. Tropospheric
haze particles are a complex multiphase and - Initial simulations demonstrated that in-particle TMI chemistry plays key role in H,O, production (> 60%)
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Multiphase modelling and mechanism development

- Simulations of three appropiate periods characterised by high H,O, concentrations

multicomponent environment, in which multiphase - H,O, concentrations of initial simulations are more than one magnitude lower than those measured

chemical processes are able to alter the chemical
aerosol composition and deduced physical aerosol

- Studies showed that interconnection of TMIs with humic like substances can be a source for H,0, [7]

properties, and can strongly contribute to air - Multiphase chemistry mechanism is extended based on available literature data

pollution. - Hence, as with around 400 million - Consideration of advanced HO, chemistry in haze particles.enabling higher in-situ H,O, formations
inhabitants, the NCP is one of the most populated

areas woldwide tropospheric haze particle related
chemistry events have a high influence on human

Multiphase Chemistry Mechanism
MCMv3.2 - CAPRAM 4.00/HM2.1/AM1.0

Table1. Perfomed model simulations.

_ _ S Model run Description
health. Despite many past Investigations, the without improvement  MCMv3.2-CAPRAM4.0o/HM2. 1/AM1.0 22506 processes
chemical haze processing Is still ur!certaln .and base case MCMv3.2-CAPRAM4.00/HM2.1/AM1.0 o S Aqueous Phase
represents a challenge in atmospheric chemistry with added iron-HULIS chemistry et Transfer Chemistry
research. Recent NCP studies during haze periods in low soluble TMI base case with low TMI soluble fraction
autumn/winter 2016 and 2017 [1] have measured high soluble TMI base case with high TMI soluble fraction MCMvs.2) (Schwartz, 1986) (CEQEEQ“A;‘J;%US
unexpected high H,O, concentrations of about 1 ppb without TMI chemistry  run without TMI chemistry P&?&Sﬁ?ﬁﬁf‘
suggesting H,O, as a potential contributor to 14244 reactions| | 347 species 7915 reactions
secondary PM,. mass, e.g., due to sulphur(lV) Key iron-HULIS complex reactions
xidation In haz rticles. However, the classical N _ -
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concentrations is inhibited suggesting multiphase FeHULIS* + O, > FeHULIS? +0; (R-1ll) chemistry module - 6 reactions
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on sulphur(1V) oxidation.

Results & Discussion

H,O, field observations

Modelled sulfate formation with MCM/CAPRAM

o ety - Modelled H,0, concentrations
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0T | 100 . . .
- | : . 2+ 0, : . .
e | / 0.9 Fer S8 FeHuLIS HO,/0; | SO, S0, by H,0,/HONO - formation via the new
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- T 200 2 Z 7 0.4
30 | - | 2% ‘ 7, % 1 : :
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Fig. 2: Measured global radiation, relative humidity and H,0, concentration is given above or below the arrows. increases and photolysis of
during the selected modelling periods (gray shaded areas). HONO is active

- Observed dependencies of daytime H,O, production rates
on sunlight intensity and relative humidity

- Indication of aqueous photochemical H,O, formation

H,O, process modelling with MCM/CAPRAM

Summary and Outlook

- New module developed containing advanced TMI-HULIS chemistry promoted
HO, formation and coupled to the MCMv3.2-CAPRAM4.0a mechanism
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