It is currently accepted that the main products of the self- and cross-reaction of RO_2 radicals are either the corresponding alkoxy radicals (RO), pathway (1a), or an alcohol (ROH) in conjunction with a carbonyl (R´(-H,=O)), pathway (1b):

 $RO₂ + R'O₂$ \rightarrow RO + R´O + O₂
 \rightarrow ROH + R´(-H,=C (1a)

 $BOH + B'(-H, =\bar{O}) + O_2$ (1b)

As a result of earlier studies, the formation of dialkyl peroxides has been discussed additionally, pathway (1c). Stated peroxide yields from the self-reaction of the simplest RO₂ radicals, RO₂ = R´O₂ = CH₃O₂, C₂H₅O₂ or CH₃C(O)O₂, were reported to be small.²

 $(1c)$

The relevance of pathway (1c) has not been investigated yet for RO₂ radicals other than for the small model RO₂ radicals and is currently not considered in atmospheric modelling. However, recent experimental findings, especially from gas-phase ozonolysis of cyclohexene and terpenes, point to accretion product formation that could be at least partly explained by a process according to pathway (1c). Here we report on an experimental study focusing on the formation of accretion products with the chemical composition ROOR´ that can be explained via pathway (1c).3

$$
RO2 + R'O2 \rightarrow ROOR' + O2
$$

- \Rightarrow The gas-phase reaction of two RO $_2$ radicals produce accretion products composed of the carbon backbone of both reactants.
- \Rightarrow RO $_2$ radicals bearing functional groups show fast accretion product formation rates competing with those of the corresponding reactions with NO and $\mathsf{HO}_{_2}.$
- \Rightarrow This pathway, not considered yet in the modelling of atmospheric processes, can be important, or even dominant for the fate of RO₂ radicals in all areas of the atmosphere.
- Temperature: 295 ± 2 K
- Residence time: 2.9 7.9 sec.
- Flown: 100 L/min. (STP) air or N_2/Q_2 mixtures
- Formation of RO_2 radicals or other intermediates
- without secondary chemistry
- *Benefit:* wall-free conditions

- CI-APi-TOF (chemical ionization - atmospheric pressure interface - time of-flight) mass spectrometry (Airmodus, Tofwerk AG) reagent ions: CH_3COO ; $C_3H_7NH_3$ ⁺ - NH₄+-Cl3-TOF (University Innsbruck)

Motivation

The global emission rate of non-methane hydrocarbons from vegetation and human activities into the atmosphere is estimated to be about 1.3 \times 10 $^{\rm 9}$ metric tons of carbon per year. $^{\rm 1}$ Their gas-phase degradation process proceeds almost exclusively via the formation of RO_{2} radicals as reactive intermediates.

Results and Discussion

Experiment

VERSITY OF HELSIN

Fig.3: RO_2 radicals, $\mathsf{HO}\text{-}\mathsf{C}_9\mathsf{H}_{12}(\mathsf{O}_2)_{\mathsf{x}}\mathsf{O}_2$ with $\mathsf{x}=1$ - 3, and accretion products, $\mathsf{C}_{_{18}}\mathsf{H}_{_{26}}\mathsf{O}_{_{8}}$ and $\mathsf{C}_{_{18}}\mathsf{H}_{_{26}}\mathsf{O}_{_{10}},$ from the reaction OH + mesitylene using OH radical formation via isopropyl nitrite photolysis.

References

- (1) A. H. Goldstein, I. E. Galbally, *Environ. Sci. Technol.* **2007**, *41*, 1514-1521.

Accretion product formation from self- and cross-reactions of RO₂ radicals **in the atmosphere**

Torsten Berndt¹, Wiebke Scholz², Bernhard Mentler², Lukas Fischer², Hartmut Herrmann¹, Markku Kulmala³, Armin Hansel^{2,3}

Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Dept. (ACD), 04318 Leipzig, Germany.

- 2 Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria.
- Department of Physics, University of Helsinki, Helsinki 00014, Finland.

- (2) a) J. Weaver, et al., *J. Photochem.* **1975**, *4*, 341-360. b) C. Anastasi, et al., *J. Chem. Soc., Faraday Trans. 1*, **1983**, 7*9,* 505-516. c) C. A. Mc-Dowell, et al., *Can. J. Chem.* **1963**, 4*1,* 300-307. - (3) T. Berndt, et al., *Angew. Chem. Int. Ed*., **2018**, *57*, 3820-3824.

Summary

Fig.2: Obtained product mass spectra in the range of 300 - 500 Th measured by $C_3H_\gamma NH_3^+$ -APi-TOF.

Free-jet flow system

Proposed mechanism Kinetic analysis of ROOR` formation via pathway (1c)

- constant $\mathsf{RO}_{_2}$ radical formation rates
- RO_2 radical concentrations increase linearly with time
- rate coefficients k_{1c} can be estimated according to equation (I) using the measured concentrations of ROOR´ and \overline{RO}_{2} radicals at reaction time t:

Leibniz Institute for

Tropospheric Research

TROPOS

- in each case the corresponding accretion products from the self- and cross-reactions of OH-reaction derived RO_2 radicals, i.e. $\mathsf{HO}\text{-}\mathsf{C}_4\mathsf{H}_8\mathsf{O}_2$, $\mathsf{HO}\text{-}\mathsf{C}_5\mathsf{H}_8\mathsf{O}_2$, $\mathsf{C}_6\mathsf{H}_{13}\mathsf{O}_2$ or $\mathsf{CH}_3\mathsf{O}_2$, and $CH_3C(O)CH_2O_2$ have been identified
- only small signals for CH_3OOCH_3 from the CH_3O_2 radical self-reaction in line with earlier observations²

contact: berndt@tropos.de

Flow visualization

Detection of RO₂ radicals and closed-shell products

Reaction of OH radicals with 1-butene, isoprene, n-hexane or methane *(OH formation via TME ozonolysis)*