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Volatile and semivolatile organic compounds are emitted
into the atmosphere in large amounts from biogenic and
anthropogenic sources

The tropospheric multi-phase system consists of the gas
phase and a suspended aqueous phase (cloud droplets,
fog, rain and deliquescent particles)

Semivolatile carbonyl compounds such as acids could be
important for secondary organic aerosol (SOA) formation
by partitioning between gas- and liquid phase of
pre-existing particles

Initiation of oxidation process by OH radicals under
formation of peroxy radicals and substituted organics

Photochemical oxidation pathways of pyruvic acid are
still under discussion by Guzman et al., 2006, Griffith et
al., 2013 and Reed Harris et al., 2014.

Adams et al., 1969 measured a rate constant of
k = 10° M s of the peroxy radical formation in the

aqueous phase

Guzman et al., 2006 estimated a 3 orders of magnitude
lower rate constant, which implies a minor importance of
the peroxy radical formation in the aqueous phase

The difference in the oxygen addition rate constants
leads to a change of the reaction pathways and results in
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Eigure 2: Laser Photolysis Long Path Absorption setup (LP-LPA).

« Analytical light sources:A = 405 nm: OH radical competition kinetics
A =442 nm: investigations of alkyl radicals + O,

« The pulse radiolysis method from Adams et

* Radical reactions: OH:  H,0,+hv —— 20H
R/RO,; OH +RH —R
R+0, —— RO,
R + [Fe(CN)J* —— [Fe(CN)]* + H* + R’

different product distributions in the aqueous solution

rate constant of the oxygen addition reaction

Figure 1: Photochemical oxidation of pyruvic acid in aqueous solution.

The aim of this work was to clarify the difference in the

al., 1969 was modified and successfully 4 k.0 [O:]
tested for laser flash photolysis conditions L= +273,
(Schaefer et al., 2015) A ko [[Fe(CN)T"]

OH radical reactivity

The H atom abstraction in the OH radical
reaction occurs at the CH, group in the case

Measurement R + O, kinetics

* The reference rate constant of the electron
transfer reaction between the alkyl radical
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IR Summary and Conclusions

« Temperature and pH dependent measurements of the H atom abstraction *
reaction of lactic acid or pyruvic acid by OH radicals were done .

« Determination of the rate constant of O, addition to the lactic acid alkyl
radical and the lactate alkyl radical by the ferricyanide competition kinetic +

method o
.« Fast O, addition to alkyl radicals (k = 10° M s™') from lactic acid or lactate :
oxidation! (confirmed the work of Adams et al., 1969) “

The estimated value of Guzman et al., 2006 (k = 10° M s) appears to low, r‘
therefore the general suggested value of k = 10° M- s should be used b
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