NO₃-Radikalreaktionen mehrfachsubstituierter Phenole in wässriger Lösung

Thomas Schaefer, Dirk Hoffmann and Hartmut Herrmann

Leibniz-Institut für Troposphärenforschung, Permoserstr. 15, 04318 Leipzig, Germany

Motivation and Hintergrund

Radikalchemie der wässriger Phase der Troposphäre

Reaktion atmosphärischer Radikale (OH bzw. NO₃) können den Abbau und die Transformation von organischen Verbindungen, wie z.B. den Phenolen, im atmosphärischen Multiphasensystem initiieren.

Substituierte Phenole in der Troposphäre

Quellen phenolischer Verbindungen sind z.B. die direkte Emissionen aus natürlichen und anthropogenen Verbrennungsprozessen oder die atmosphärische Oxidation von Benzolderivaten. Aufgrund ihrer Eigenschaften kann die Chemie der Phenole in allen atmosphärischen Phasen wie z.B. in der Flüssigphase (Wolkentröpfchen, Nebel, Regen oder hygroskopische Partikel) stattfinden.

Ziel dieser Studie

Temperaturabhängige kinetische Untersuchungen zur Reaktivität mehrfach substituierter Phenole gegenüber NO_3 in wässriger Phase und Charakterisierung des Substituenteneinflusses.

Experimentelle Methoden

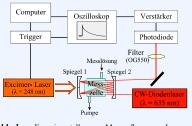


Abb. 1: Experimenteller Messaufbau: Laser-Photolyse-Lang-Weg-Absorptions-Apparatur (LP-LPA)

 Laserblitzphotolyse von Nitratanionen bei einer Wellenlänge von λ = 248 nm und pH = 0.5 (HClO₄)

$$NO_3^- + hv + H^+ \longrightarrow NO_2 + OH$$

$$HNO_3 + OH \longrightarrow NO_3 + H_2O$$

- $[NO_3]_0 \approx 1.8 \cdot 10^{-7} \text{ M}$, Laserenergie = 950 mJ
- $[NaNO_3] = 5 \cdot 10^{-2} \text{ M}$; $[Reaktand] = 2 10 \cdot 10^{-5} \text{ M}$
- Messungen der Geschwindigkeitskonstanten pseudo erster Ordnung als Funktion der Temperatur (278K ≤ T ≤ 318K)
- Messung des Konzentrations-Zeit-Verlaufes des NO_3 -Radikals bei $\lambda = 635 \text{ nm}$

Ergebnisse und Diskussion

Tabelle 1: Geschwindigkeitskonstanten zweiter Ordnung bei 298 K, Aktivierungsparameter, EHOMO und Bindungsdissoziationsenergie (BDE) für die untersuchten NO3-Radikalreaktionen in wässriger Lösung.

	· ·		ž ,	01	nowo	ε .	<i>'</i>	,	0 0	
	2,6- Dimethylphenol	2,6- Dichlorophenol	2,6- Dihydroxyphenol	2,6- Dinitrophenol	2,6- Dimethoxyphenol	4-Hydroxy-3,5- dimethoxybenzaldehyd	4-Hydroxy-3,5- dimethoxybenzoesäure	4-Hydroxy-3- methoxybenzaldehyd	4-Hydroxy-3- methoxybenzoesäure	3-Hydroxy-4- methoxybenzoesäure
	H ₂ C CH ₃	CI	H. O. H.	O_2N \longrightarrow NO_2	H ₃ C CH ₃	H ₃ CCCH ₃	H ₂ C CH ₃	OH CH ₃	OH CH ₁	OF OH
k _{298K} [M ⁻¹ s ⁻¹]	$(1.8 \pm 0.3) \cdot 10^9$	$(1.3 \pm 0.2) \cdot 10^9$	(1.7 ± 0.2)·109	$(2.8 \pm 0.9) \cdot 10^{8}$	$(1.6 \pm 0.4) \cdot 10^9$	$(1.7 \pm 0.3) \cdot 10^9$	$(1.4 \pm 0.6) \cdot 10^9$	$(1.1 \pm 0.2) \cdot 10^9$	$(1.0 \pm 0.3) \cdot 10^9$	$(1.3 \pm 0.4) \cdot 10^9$
E _A [kJ mol-1]	17 ± 6	14 ± 5	9 ± 5	18 ± 9	16 ± 7	18 ± 4	19 ± 10	16 ± 4	15 ± 4	11 ± 4
A [M-1 s-1]	$(1.5 \pm 0.1) \cdot 10^{12}$	$(3.9 \pm 0.3) \cdot 10^{12}$	$(6.9 \pm 0.6) \cdot 10^{10}$	$(3.2 \pm 0.4) \cdot 10^{11}$	$(1.0 \pm 0.1) \cdot 10^{12}$	$(2.8 \pm 0.2) \cdot 10^{12}$	$(2.8 \pm 0.4) \cdot 10^{12}$	$(7.8 \pm 0.4) \cdot 10^{11}$	$(3.8 \pm 0.4) \cdot 10^{11}$	$(9.0 \pm 0.6) \cdot 10^{10}$
ΔH [‡] [kJ mol ⁻¹]	15 ± 5	12 ± 4	7 ± 4	15 ± 8	14 ± 6	16 ± 4	16.1 ± 8.2	14 ± 3	12 ± 3	8 ± 3
ΔS [‡] [J mol-1 K-1]	$-(20 \pm 2)$	$-(31 \pm 2)$	$-(46 \pm 4)$	$-(33 \pm 5)$	$-(23 \pm 2)$	$-(15 \pm 1)$	$-(15 \pm 2)$	$-(26 \pm 1)$	$-(32 \pm 2)$	$-(44 \pm 3)$
ΔG [‡] [kJ mol ⁻¹]	21 ± 9	21 ± 9	21 ± 13	25 ± 16	21 ± 11	20 ± 6	21 ± 13	22 ± 6	22 ± 8	21 ± 9
E _{HOMO} [eV] ^[5]	-8.9631	-9.1938	-8.8097	-10.6995	-8.7809	-9.1109	-9.5300	-9.4144	-9.4118	-9.2175
BDE [kJ mol-1]	357.3[6]	370.3[6]	a358.1/b349.3/c344.1[8]	397.3[6]	350.3[6]	-	-	356.9191	357.3191	357.7191

H-Atom-Abstraktion

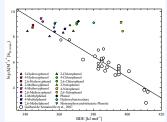
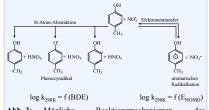



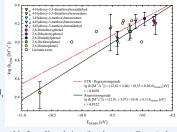
Abb. 4: Korrelation nach Evans-Polyani (log k_{298K} vs. BDE) der Geschwindigkeitskonstanten aus Tabelle 1 sowie Literaturwerte ^[1,2].

Konkurrierende Reaktionsmechanismen

10g K_{298K} = I (BJE) 10g K_{298K} = I (E_{HOMO})

Abb. 3: Mögliche Reaktionsmechanismen des
Nitratradikals mit substituierten Phenolen in
wässriger Lösung^[1].

- Regressionsgerade f
 ür H-Atom-Abstraktionsreaktionen von aliphatischen und zyklischen Verbindungen ^[1,2]: lg(k_H/[M⁻¹s⁻¹]) = (37,7 ± 5,8) + (-0,082 ± 0,015)·BDE [kJ mol⁻¹]
- Die Werte k_{H,cal} der substituierten Phenole in Tabelle 2 wurden unter Verwendung dieser Regressionsgeraden berechnet
- $\bullet \ \ \ Die \ Verhältnisse \ (k_{H,cal}/k_{298K}) \ in \ Tabelle \ 2 \ spiegeln \ die \ theoretischen \ Beiträge \ zur \ H-Atom-Abstraktion \ wieder \ der \ beitrage \ zur \ H-Atom-Abstraktion \ wieder \ beitrage \ beitrage \ zur \ H-Atom-Abstraktion \ wieder \ wiede$
- Bis auf die Ausnahme des hydroxysubstituierten Phenols, zeigen die Verhältnisse (k_{H,cal}/k_{298K}), dass der H-Atom-Abstraktionsmechanismus eine untergeordnete Rolle spielen sollte


Tabelle 2: Geschwindigkeitskonstanten, Literaturwerte und Verhältnisse für die substituierten Phenole.

Geschwindigkeitskonstante k _{298K} [M ⁻¹ s ⁻¹]											
Verbindung	-NO ₂	-Cl	-CH ₃	-OCH ₃	-ОН						
2-	$(8.3 \pm 1.4) \cdot 10^{8*}$	$(2.9 \pm 0.3) \cdot 10^{8*}$	$(8.5 \pm 0.2) \cdot 10^{8*}$	$(1.1 \pm 0.1) \cdot 10^{9}$	$(5.6 \pm 0.8) \cdot 10^{8*}$						
4-	$(1.4 \pm 0.2) \cdot 10^{9**}$	$(1.0\pm0.4)\!\cdot\!10^{9^*}$	$(1.8 \pm 0.3) \cdot 10^{9**}$	$(2.8 \pm 0.5) \cdot 10^{9**}$	$(1.6 \pm 0.6) \cdot 10^{9**}$						
2,6-	$(2.8 \pm 0.9) \cdot 10^{8}$	$(1.3 \pm 0.2) \cdot 10^9$	$(1.8 \pm 0.2) \cdot 10^9$	$(1.6 \pm 0.2) \cdot 10^9$	$(1.7 \pm 0.2) \cdot 10^9$						
Verhältnisse der Geschwindigkeitskonstanten											
$k_{H,calc}/k_{2-}$ [%]	6	11	12	40	>100						
$k_{H,calc}/k_{4-}$ [%]	0	2	5	41	>100						
k _{H,calc} /k _{2,6-} [%]	0	2	14	59	>100/88/17						
* Barzaghi 2004 [2],** Weller 2006 [3]											

Elektronentransfer

- E_{HOMO} ist die Energie des höchstbesetzten Molekülorbitals und ein Maß für die Elektronendonorfähigkeit
- Für reine Elektronentransferreaktionen (rote Regressionsgerade) wurden Reaktanden, wie Phenol^[3], 4-Nitrophenol^[4], 4-Fluorophenol^[3], 4-Bromophenol^[3], 4-Chlorophenol^[3], 4-Hydroxybenzoesäure^[4], 2,6-Dinitrophenol und 2,6-Dichlorophenol ausgewählt, da diese ein Verhältnis (k_{H.cal}/k_{298K}) kleiner 5% aufweisen

Vergleich der Geschwindigkeitskon-

Korrelation (log k_{298K} vs. E_{HOMO}) der untersuchten phenolischen Verbindungen aus Tabelle 1.

- stanten in Tabelle 2 zeigt, dass die Geschwindigkeitskonstanten durch elektronischen und sterische Effekte beeinflusst werden
- Verbindungen mit elektronenziehenden Substituenteneffekt reagieren langsamer, da gebildete Zwischenprodukte destabilisiert werden (siehe Abb. 3)
- Der Ausschluss der Wasserstoffatomabstraktion als ein möglicher Reaktionsweg deutet an, dass die untersuchten Phenole hauptsächlich nach Elektronentransfermechanismus reagieren

Zusammenfassung

- Die Korrelationen zeigen, dass der direkte Elektronentransfer in wässriger Lösung wahrscheinlich der dominierende Reaktionsmechanismus ist
- Schneller Abbau in der Nacht durch NO₃-Radikalreaktionen möglich, wenn der Phasentransfer nicht der geschwindigkeitsbestimmende Schritt ist
- Durch troposphärische Multiphasenmodelle mit einer akkuraten Phasentransferbeschreibung sollten die atmosphärischen Lebenszeiten der untersuchten Biomasseverbrennungsmarker^[7] unter Anwendung der NO₃-Geschwindigkeitskonstanten modelliert werden
- Die erhaltenen Regressionsgleichungen (Abb. 5) können zur Vorhersage der Geschwindigkeitskonstanten der Reaktionen von Nitratradikalen mit substituierten Phenolen angewandt werden

Literatur

[1] H. Herrmann, R. Zellner, Reactions of NO₃-Radicals in Aqueous Solution in N-Centered Radicals; Z.B. Alfassi (Ed.) Wiley: New York, 1998, 291. [2] Ph. G. deSemainville, D. Hoffmann, C. George and H. Herrmann, Phys. Chem. Chem. Phys., 2007, 9, 958. [3] P. Barzaghi and H. Herrmann, Phys. Chem. Chem. Phys., 2004, 4, 3669. [4] C. Weller, Diploma Thesis, University Freiberg, 2006. [5] calculated with Hyper Chem Released 7.5 Inc. Hypercube. [6] M.M. Bizarro, B.J. Costa Cabral, R.M. Borges de Santos and J.A.M. Simoes, Pure Appl. Chem., 1999, 71, 1249. [7] B. R. T. Simoneit, Appl. Geochem., 2002, 17, 129. [8] H.F. Ji, and H.Y. Zhang, New J. Chem., 2005, 29(4), 535. [9] J.S. Wright, E.R. Johnson, and G.A. DiLabio, J. Am. Chem. Soc., 2001, 123(6), 1173.

Ausblick

- Weitere Messungen anderer 2,6- und 2,4-substituierter phenolischer Reaktanden mit den Nitrat- bzw. Hydroxylradikal in wässriger Lösung
- Spektroskopische Untersuchungen, um die Bildung von Zwischenprodukten (z.B. organische Phenoxybzw. Peroxylradikale) zu studieren
- Produktstudien zur Identifizierung und Quantifizierung der gebildeten Oxidationsprodukte der Nitratradikal- bzw. Hydroxylradikalreaktion