

Kinetische und spektroskopische Untersuchungen der Reaktion von O₂⁻ mit Ozon in wässriger Phase

J. Hesper und H. Herrmann Institut für Troposphärenforschung e.V. Permoserstr. 15, 04318 Leipzig

1. Motivation

Freie Radikale spielen in der tropospherischen Flüssigphasenchemie eine wichtige Rolle [1,2]. In diesen Tröpfchen ist die Reaktion von O_2^- mit Ozon für den Abbau von Ozon und das Recycling von OH-Radikalen von Interesse. Der erste Reaktionsschritt führt zur Bildung von O_3^-/HO_3 welches im nachfolgenden Schritt der Reaktion zu O⁻/HO· zerfällt [3,4] In der hier vorgestellten Arbeit wurde die Bildungsgeschwindigkeit von O_3^- und der nachfolgende Zerfall zu O⁻/HO· .untersucht. Die Reaktionsgeschwindigkeiten wurde im Temperaturbereich von 278 bis 308 K bestimmt

3.2 Ergebnisse der kinetischen Untersuchungen

Die Kinetik der Reaktion des Superoxid Anions (O_2^-) mit Ozon (R-3) und der folgende Zerfall des Ozonid Radikals (R-4) wurde untersucht. Die erhaltenen Ergebnisse sind in den folgenden Abbildungen dargestellt.

2. Experimentelle Grundlagen

Die Kinetik der Reaktion von O_2^- mit Ozon und der nachfolgende Zerfall des O_3^- Radikalanions wurde mit Hilfe einer Laserphotolyse - Langwegabsortions Anordnung (LP/LPA) untersucht. O_2^- wurde mittels Laserphotolyse bei pH = 10.0 wie folgt erzeugt:

CH ₃ COO ⁻	+ hv (193 nm)	\longrightarrow	e ⁻	+	CH ₃ COO·	(R-1)
e ⁻	+ O ₂	>	O2 ⁻			(R-2)

Das in dieser Reaktion gebildete Superoxid Radikalanion (O_2^-) reagiert mit zugesetzten Ozon zum Ozonid Radikal (O_3^-):

Eine mögliche Nebenreaktion führt zur Bildung des Methylperoxy Radikals welches ebenfalls mit O_2^- reagiert.

	CH ₃ COO∙			>	CH3.	+	CO_2	(R-5)
	CH ₃ ·	+	O_2		$CH_{3}O_{2}$		-	(R-6)
	$CH_{3}O_{2}$	+	02^{-}	>	CH ₃ OÕ ⁻	+	02	(R-7)
und	CH_3O_2 ·	+	03	>	CH ₃ O∙	+ 2	$2 \tilde{O_2}$	(R-8)

Die Geschwindigkeitskonstanten für die Reaktionen R-7 und R-8 bei 298 K sind

$$\begin{array}{ll} k(R-7) = 5.0 \cdot 10^7 \ [l(mol \ s)^{-1}] \\ k(R-8) = & 33 \ [l(mol \ s)^{-1}] \end{array} & \text{vom Jacob} \ (1986) \ [5] \\ \text{von Shereshovets, Komissarov} \\ \text{und Denisov} \ (1978) \ [6] \end{array}$$

<u>Abb. 3:</u> Geschwindigkeitskonstante für die Reaktion (R-3) gemessen bei T = 298 K, pH = 10.0

Aus der Steigung der Regressionsgeraden aus Abbildung 3 kann die Geschwindigkeitskonstante berechnet werden.

$$k_3(298) = (1.6 \pm 0.3) \cdot 10^9 \text{ M}^{-1} \text{s}^{-1}$$

 $k_3(298) = 1.6 \cdot 10^9 \text{ M}^{-1} \text{s}^{-1}$ von Staehelin und Hoigné (1984)[8]

Der erhaltene Wert ist in guter Übereinstimmung mit dem Literaturwert von Staehelin und Hoigné (1984). Um Aussagen über die Aktivierungsenergie E_A machen zu können, wurden die Reaktionen R-3 und R-4 im Temperaturbereich zwischen 278 und 318 K gemessen.

und somit ist Reaktion R-7 um zwei Größenordnungen und Reaktion R-8 um acht Größenordnungen langsamer als die Reaktion von O_2^- mit Ozon.

Die hier beschriebene Laserphotolyse-Langwegabsortions Anordnung (LP/LPA)wurde für direkte spektroskopische und kinetische Studien von kleinen Radikalen in flüssiger wässriger Phase, welche im Bereich von 215 nm - 750 nm absorbieren konstruiert (Abbildung 1). Für die kinetischen Untersuchungen des O_3^- Radikals wurde bei 430 nm das Absoption/ Zeitverhalten mit einer Monochromator/Photomultiplier Kombination aufgenommen. Als Analysenlicht stand hierzu eine Deuteriumlampe zur Verfügung. Um die Nachweißempfindlichkeit zu erhöhen wurde der Lichtstrahl mit Hilfe einer Spiegelanordnung nach White [7] 8 mal durch die Zelle reflektiert. Für diese Studie wurden die Bildungsgeschwindigkeitskonstanten von O_3^- (R-4) und der Zerfall (R-4) im Temperaturintervall zwischen 278Kund 318 K untersucht.

<u>Abb. 1:</u> Laserphotolyse-Langweg-Absorption (LP-LPLA) Anordnung für kinetische und spektroskopische Untersuchungen.

<u>Abb. 4</u>: Arrhenius-Auftragung für die Elektronentransfer Reaktion R-3.

Die erhaltenen Arrhenius Daten lauten:

```
k(T) = (2.3 \pm 0.3) \cdot 10^{12} \cdot \exp [-(2200 \pm 1100)K/T] 1 \text{ mol}^{-1} \text{ s}^{-1}
E_A = (18 \pm 9) \text{ kJ mol}^{-1}
```

Arrhenius-Auftragung für den Zerfall des Ozonid Radikals (O₃⁻) im Temperaturintervall zwischen 278 und 318 K.

Abb.5: Arrhenius-Auftragung für den Zerfall des O₃⁻

Damit besteht für die Reaktion (R-4) folgender Zusammenhang zwischen der Temperatur und der Geschwindigkeitskonstanten.

 $k(T) = (7 \pm 1) \cdot 10^9 \cdot \exp \left[-(4500 \pm 1000) \text{K/T}\right] \text{ s}^{-1}$

3. Ergebnisse

3.1 Absorptionsspektrum von $O_3^{-}_{(aq)}$

Das Absorptionsspektrum des O_3^- Radikals in wässriger Phase wurde im Spektralbereich von 350 bis 520 nm untersucht. Das erhaltene Spektrum (Abbildung 2) ist in guter Übereinstimmung mit dem Literaturspektrum [3].

<u>Abb. 2:</u> Absorptionssspektrum des O₃⁻ Radikals in wässriger Phase

$E_{A} = (37 \pm 9) \text{ kJ mol}^{-1}$

4. Zusammenfassung

Die beobachteten Temperaturabhängigkeiten der Geschwindigkeitskonstanten werden in das 0D-Boxmodell CAPRAM 2.4 (Flüssigphase) + RACM (Gasphase) eingebaut. Die Flüssigphasen Reaktion von O_2^- mit Ozon kann zu erhöhter Aufnahme des Hydroperoxylradikals in Troposphärischen wässrigen Partikeln führen [9]. Die Reaktion trägt in atmosphärischen Wolkentropfen neben dem Ozonabbau auch in einem mehrstufigen Prozess zum OH-Recycling bei.

5. Danksagung

Die Autoren danken der Kommission der europäischen Gemeinschaft für die Förderung der hier vorgestellten Arbeit in dem Vorhaben MODAC unter Förderkennzeichen ENV4 -CT97-0388 .

6. Literatur

[1]R. Zellner and H. Herrman, "Free Radical Chemistry of the Aqueous Phase", in Advances in Spectrocopy, Vol. 24, "Spectroscopy in Environmental Science", Eds. R.J.H. Clark and R.E. Hester, pp. 381-451, Wiley, London [1995]
[2] J. Lelieveld and P.J. Crutzen, Nature, Vol 343, 227-233, [1990]
[3] J. Staehelin, R.E. Bühler and J. Hoigné, J. Phys. Chem., 88, 5999-6004, [1984]
[4] K. Sehested, H. Corfitzen, J. Holcman, C.H. Fischer and E.J. Hart, Environ. Sci. Technol., 25, 1589-1596 [1991]
[5] D.J. Jacob, J. Geophys. Res. 91. 9807-9826 [1986]
[6] Shereshovets, V.V.; Komissarov, V.D.; Denisov, E.T., Bull. Acad. Sci. USSR, Div. Chem. Sci., 28,1132-8 [1978]
[7] J.U. White, J. Opt. Am., 42, 285 [1942]
[8] J. Staehelin, J. Hoigné, J. Phys. Chem., 88, 2560-2564 [1984]
[9] H. Herrmann, B. Ervens, H.-W. Jacobi, R. Wolke, P. Nowacki and R. Zellner; CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry, J. Atm. Chem. 36, 231-284 [2000]